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Diffraction Intensities from a Cluster of Curved Crystallites. II. The Effect of Curvature 

BY G. B. MITRA AND S. BHATTACHARJEE 

Department of Physics, Indian Institute of Technology, Kharagpur, India 

(Received 9 September 1966 and in revised form 21 April 1967) 

An attempt has been made to use the general expression derived by Mitra for the intensity of X-rays 
diffracted by a cluster of two-dimensional identical curved crystallites in studying the changes expected 
in the diffraction pattern when the curvature of the crystallite is changed. For this purpose, the previous 
expression has been modified into a form suitable for numerical computation. The modified expression 
for the intensity is expressed as a finite series of terms containing Bessel functions of zero order only. 
Further simplification is arrived at for the case of a cluster of crystallites consisting of single arcs only. 
On the basis of the expression derived, the intensity diffracted at different angles by a cluster of curved 
crystallites consisting of single arcs of different curvatures has been computed numerically. For studying 
the effect of different curvatures, calculations have been carried out for arcs subtending 0, 10, 20, 30, 
60 and 90 ° respectively at the centre of curvature for two different values of the total number of atoms 
on an arc. Where the total number of atoms on each arc is 20, there is no appreciable variation with 
curvature of the displacements of the maxima from the Bragg angle. Intensity maxima and line profiles 
remain practically identical for all values of curvature for this value of the total number of atoms. 
However, when the total number of atoms on each arc is 4, the shifts in the positions of the maxima 
and the broadening of the line profile become more pronounced and the peak shifts increase, though 
by a small amount, as the curvature increases. 

Introduction 

In a previous publication (Mitra, 1965; hereafter called 
I) an expression has been derived for the intensity of 
X-rays diffracted by an axially parallel aggregate of 
curved crystallites. This expression reduces to the usual 
expression for ordinary straight crystallites leading to 
the Laue-Bragg laws if the curvature is made zero. On 
the other hand, when the crystallites are considered to 
be composed of atoms equiangularly arranged on the 
circumferences of concentric circles, the expression re- 
duces to the one derived by Blackman (1951) for such 
cases. Thus the expression derived in I is of a very 
general nature and it should be possible to use this 
expression in studying the changes expected in the dif- 
fraction pattern when the curvature of the crystallite 
is changed. It would, indeed, be interesting to investi- 
gate the effect on the diffraction pattern of changing 
the curvature of the curved crystallite till it becomes 
zero, i.e. the crystallite becomes an ordinary one for 
which the Laue-Bragg laws are valid. With the results 
of such investigations available, it is expected that it 
might be possible, by studying the diffraction pattern, 
to distinguish between conglomerations of curved crys- 
tallites having different curvatures and also perhaps to 
make an estimate of the extent of curvature in the 
crystallites. The present work aims at carrying out this 
investigation. 

Explanation of the symbols used 

a = repeat distance between two neighbouring atoms 
on the first arc on the concave side of the bent 
crystallite. 

b =the  radial distance between two successive con- 
centric arcs. 

~0 = the angle subtended at the common centre of the 
arcs by two neighbouring atoms on the same arc. 

N = number of atoms on each arc. 
M=number  of concentric arcs in each crystallite. 
a =2n/N~o 
h = 2a sin 0/2 
k = 2b sin 0/2 
p =the order of the Bessel function. 
0 = half the angle of deviation. 
2 =wavelength of the X-rays used for recording the 

diffraction pattern. 
I(h,k)=intensity of the X-rays diffracted when the 

angle of deviation is 20. [See equation (8) of I.] 
m,n = number indicating the position of an arc on 

which a particular atom is placed, counting 
from the concave side. 

Simplification of the intensity expression 

The intensity expression derived in I contains an infi- 
nite series of products of Bessel functions of the first 
kind in which the order of the Bessel functions in- 
creases monotonically to infinity. For crystallites of 
ordinary size and slight curvature, the arguments of 
the Bessel functions are generally very large. Hence 
numerical computations for such cases would require 
summing over a very large number of terms of this 
type. Evaluation of Bessel functions of such large ar- 
guments and orders and for so many terms would 
indeed be a stupendous task. A modification of the 
intensity expression, in a form suitable for numerical 
computation, is therefore highly desirable. 
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As has been shown in I, the intensity of  X-rays dif- 
fracted by a r andom cluster of  two-dimensional  iden- 
tical curved crystallites axially parallel to one another  
is given by 

M--1 M--1 

l ( h , k ) =  N 2 ~ S Jo(aN{h+mkq~}) 
m----0 n----0 

x Jo(aN{h+nk~o}) 
oo M - - 1  M - - 1  

+ 2  27 [ .S 27 Jr(QN{h+mkq~}) 
p = l  in=O n = 0  

sinZNp~o/2 
x J~(QN{h+nk~o})] sinZp~o/2 . (1) 

It  is also well known that  

sinZNp~o/2 I=~-1 
= N +  2 27 ( N - l )  cos plq~, (2) 

sinEp~o/2 l=1 

where l is an integer. 
Combining equations (1) and (2), we have, 

M'--I  M--1 

I(h,k) = 27 27 {N2Jo(QN{h+mk~o}) 
m = 0  n=O 

x Jo(QN(h+nk~})  
o o  

+ 2 E [J~o(QN{h+mkq~})J~(aN{h+nk~o))] 
p = l  

I = N - - 1  

× [ N +  2 27 ( N - l )  cos lp~o]}. (3) 
1=1 

It  is further known (Bowman, 1958) that  

S0{ 1/(x z + y2 _ 2xy cos ~)) = 
O<3 

Jo(x)Jo(y) + 2 X J~o(x)J~(y) cos p ~ .  (4) 
p = l  

It  follows f rom equat ion (4), setting ~ = 0, that  
o o  

Jo(x -  y) = Jo(x)Jo(Y) + 2 Z J~o(x)J~(y) . (5) 
p = l  

Combining equations (3), (4) and (5) we easily obtain 

X(h,k) = 27 27 NJo(QNk~o{m-n}) 
in n 

N - - I  

+ 2 27 Z .F, (N-1)Jo[QN(V{(h+mk~o) z 
m n l = l  

+ (h + nk~0)2- 2(h + mkc0)(h + nk~0) 

× cos/~})]. (6) 

Equat ion (6) can be computed  with comparat ive ease 
since it is a series only in terms of J0 for which tables 
even for comparat ively large arguments  are available 
and asymptot ic  terms may be conveniently used. The 
summat ion  is over smaller number  of terms, i.e. N 
terms only. 

The case of  a duster of  single arcs 

Fur ther  simplification is arrived at for the case of a 
cluster of  crystallites consisting of  single arcs only. Fo r  
this case both  m and n are zero and equat ion (6) be- 
comes 

N--1 

l ( h ) = N +  2 27 (N- l )Jo(2QNh sin l~,/2) . (7) 
l----1 

For  the case of  zero curvature ~0--->0, lq~-->0 and 
sin lq~/2-+l~o/2; equat ion (7) for this case becomes 

N--1 

l ( h ) = N + 2  E (N-l)Jo(2rchl) .  (8) 
1=1 

Numerical computation for single arcs 
and discussion of  the results 

Calculations have been carried out  for N = 2 0  and 
Q=oo, 36, 18, 12 corresponding to Nq)=O, 10, 20, 
and 30 ° respectively and also for N = 4  and Q=oo,  
36, 18, 12, 6 and 4 corresponding to N~o=O, 10, 20, 30, 
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Fig. 1. Relative intensity at different angles of deviation of X-rays diffracted by an axially parallel aggregate of linear crystallites 
each consisting of 20 atoms arranged equiangularly on arcs subtending angles of 0, 10, 20 and 30 ° at the centre of curvature. 
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60 and 90 ° respectively, h has been taken from 0 to 
2.2. Values of  Jo(x) for x up to 25 have been taken 
from the British Association Mathematical Tables VI, 
Bessel Functions, Part I (Cam, 1950) and for x > 25 have 
been calculated from the asymptotic expression 

Yo(X) = l/(2/r~x) cos ( x -  zc/4). 

Results of  the calculations are shown graphically in 
Figs. 1, 2, 3, 4 and 5. 

Fig. 1 represents the I(h)-h curves for N = 2 0  and 
Q = o o ,  36, 18 and 12, while Fig.2 represents similar 
curves for N =  4 and Q = 36, 12, 6 and 4. Calculations 
have shown that the values of  l(h) for N =  4 and Q = c~ 
and 18 are almost same as those of  for N = 4  and Q = 3 6 .  
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Fig. 2. Relative intensity at different angles of deviation of X-rays diffracted by an axially parallel aggregate of linear crystallites 
each consisting of 4 atoms arranged equiangularly on arcs subtending angles of 10, 30, 60 and 90 ° at the centre of curvature. 
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Fig. 3. Diffraction profile of X-rays diffracted by an axially parallel aggregate of linear crystallites each consisting of (a) 20 atoms 
(b) 4 atoms arranged equiangularly on arcs subtending angles of 10 ° at the centre of curvature. 
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Fig. 4. Diffraction profile of X-rays diffracted by an axially parallel aggregate of linear crystallites each consisting of (a) 4 atoms 
(b) 20 atoms arranged equiangularly on arcs subtending an angle of 20 ° at the centre of curvature. 
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F i g .  5. Diffraction profile of X-rays diffracted by an axially parallel aggregate of linear crystaUites each consisting of (a) 4 atoms 
(b) 20 atoms arranged equiangularly on arcs subtending an angle of 30 ° at the centre of curvature. 
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Hence they are not plotted separately. Figs. 3, 4 and 5 
show the normalized I(h)-h curves for N = 2 0  with 
N =  4 for three different values of N~o, viz. 10, 20 and 30 °. 

l(h)-h curves in Fig. 1 show that for N = 2 0  and 
Q=oo ,  36, 18 and 12 the maxima are slightly shifted 
in all cases and are no longer coincident with integral 
values of h. The maxima in the neighbourhood of h = 1 
are at h =  1.02 rather than at h =  1 and those in the 
neighbourhood of h = 2  are at h=2 .02  for all values 
of Q. The general features of all the curves are essen- 
tially same. 

Fig.2 shows that for N = 4  and Q=36,  12, 6 and 4 
the maximum in the neighbourhood of h = l  is at 
h =  1.06, 1.075, 1.08 and 1.1 respectively. The second 
maximum in the neighbourhood of h = 2  is found to 
be at h=2.07 for Q = 3 6  and 12 whereas for Q = 6  it is 
at h=2 .10  and for Q = 4  at h=2.13.  The above two 
results show that the peak shifts become more appre- 
ciable as the value of Q decreases and also for the same 
value of Q as N decreases. 

For Q =  1 and N = 2 0  it was observed in I that the 
intensity maximum in the neighbourhood of h = 1 was 
at h = l . 1  rather than at h = l .  For N = 1 0  and Q = 2  
the maximum shifted to h = 1.05. It appears therefore, 

that the shift in maxima is a combined and complicated 
effect of the variation of N and (p. 

Figs. 3, 4 and 5 show that the sharpness of the peaks 
for N =  20 is more pronounced than that for N =  4 for 
the same values of Q. Also it is observed from Fig. 1 
that the intensity maxima and the broadening of the 
line profile remain almost the same for all values of Q. 
From Fig. 2 also similar observations can be made, but 
here the intensity maxima are less and the line profiles 
much broadened compared with Fig. 1. So from Figs. 
1, 2, 3, 4 and 5 it can be concluded that the decrease 
in the value of N causes a decrease in the heights of 
maxima and broadens the line profile. This is an ex- 
pected result as the decrease in the value of N is anal- 
ogous to decrease in particle size. Further detailed 
numerical calculations for elucidating these points are 
being taken up. 
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X-ray Measurements of Staeking Faults in Copper-Antimony Alloys 
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(Received 6 June 1967) 

The line profiles from cold-worked copper-base alloys containing pentavalent solute antimony in the 
primary solid solution range have been recorded by a Geiger counter X-ray diffractometer. The de- 
formation fault probability ~. and the twin fault probability/~ have been obtained from peak shift 
and peak asymmetry measurements respectively. A roughly parabolic variation of e with increasing 
solute content has been observed. However, the increase of e with the increase of solute valency for 
fixed electron concentration per atom is not clearly established. The twin fault probability//also in- 
creases in a similar way as observed in other copper-base alloys. 

During recent years extensive studies have been made 
of the presence and effects of stacking faults in copper- 
and silver-base alloys containing di-, tri- or tetravalent 
solutes and measurements with pentavalent solutes 
have been lacking. Recently, Sastry, Rama Rao & 
Anantharaman (1966) and Sen Gupta (1967) have de- 
termined the stacking fault concentrations in alloys of 
silver with the pentavalent solute antimony and ob- 
served the possible correlations between stacking fault 
probability ~ and the solute valence as well as electron 
concentration per atom, e/a. The present note reports 
results of our X-ray measurements of deformation and 
twin stacking fault probabilities c~ and fl from peak 
shift and peak asymmetry in cold-worked copper- 
antimony alloys in the solid solution range. 

Alloys were prepared from spectrographically stan- 
dardized copper and antimony supplied by Messrs 
Johnson, Matthey & Co., Ltd, London, following the 
same method as adopted previously (Sen Gupta & 
Quader, 1966), the homogenization temperature being 
650-750 °C. The annealing treatments were terminated 
by quenching in water. Weight changes during prepa- 
ration were negligible and hence no chemical analyses 
of the alloy specimens were performed. Preparations 
of the cold-worked and annealed samples and record- 
ings of the line profiles of several X-ray reflexions were 
carried out in the usual way (Sen Gupta & Quader, 
1966). Cold-working and the experimental observations 
were done at room temperature, 30 + 1 °C. No phase 
transformation has been observed due to cold work. 
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